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Abstract: The spatiotemporal distribution pattern of the surface temperatures of urban forest canopies
(STUFC) is influenced by many environmental factors, and the identification of interactions between
these factors can improve simulations and predictions of spatial patterns of urban cool islands.
This quantitative research uses an integrated method that combines remote sensing, ground surveys,
and spatial statistical models to elucidate the mechanisms that influence the STUFC and considers the
interaction of multiple environmental factors. This case study uses Jinjiang, China as a representative
of a city experiencing rapid urbanization. We build up a multisource database (forest inventory,
digital elevation models, population, and remote sensing imagery) on a uniform coordinate system
to support research into the interactions that influence the STUFC. Landsat-5/8 Thermal Mapper
images and meteorological data were used to retrieve the temporal and spatial distributions of
land surface temperature. Ground observations, which included the forest management planning
inventory and population density data, provided the factors that determine the STUFC spatial
distribution on an urban scale. The use of a spatial statistical model (GeogDetector model) reveals the
interaction mechanisms of STUFC. Although different environmental factors exert different influences
on STUFC, in two periods with different hot spots and cold spots, the patch area and dominant
tree species proved to be the main factors contributing to STUFC. The interaction between multiple
environmental factors increased the STUFC, both linearly and nonlinearly. Strong interactions tended
to occur between elevation and dominant species and were prevalent in either hot or cold spots in
different years. In conclusion, the combining of multidisciplinary methods (e.g., remote sensing
images, ground observations, and spatial statistical models) helps reveal the mechanism of STUFC
on an urban scale.
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1. Introduction

With the acceleration of urbanization, more and more urban forest (definition: all the trees within
the administrative boundaries of the city) distributed in highly populated environments has become
an important part of urban landscapes [1]. Urban forest mainly includes urban forest land, trees in
parks, trees along streets, and trees dispersed in residential land. In addition to their use for landscape
decoration, residents appreciate the services provided by the branches and leaves of urban forest [2,3].
For example, the dense shade that limits heat re-emitted from pavement, walls, and adjacent objects,
and the direct radiant heat from the sun. Water transpiration through leaves further reduces the radiant
heat, and this cooling effect mitigates the urban heat island effect and improves the quality of the
urban ecological environment [4]. A growing number of countries have started to place large-area
monitoring of urban forest on their political agenda. Moreover, the target of forest-resource surveys in
China, India, Sweden, and the UK has also expanded from traditional forests to urban forest [5,6].

The large-area monitoring of urban forest currently relies mainly on remote sensing images,
combined with ground-survey methods to evaluate the various functional types and different spatial
configurations [5,7,8]. This method is promising for large-area monitoring of forest resources [9,10].
However, the method uses remote sensing images as essential data input and ground surveys as
auxiliary verification data instead of integrating multisource data [1]. Furthermore, the monitoring
studies of urban forest ecological functions are limited to national and global scales, with quantitative
studies on the urban scale being rare (the urban scale often means the area within city-level
administrative boundaries). The transpiration cooling function of urban forest on the urban scale
is strongly heterogeneous in both the spatial and temporal domains, and the quantitative study of
spatiotemporal heterogeneity poses a new challenge for ecologists [2,11]. As various environmental
factors interact (indirect effect), the diversity, complexity, nonlinearity, and heterogeneity of these
factors influence the entire process of urban forest growth [12], and interactions between these
environmental factors vary in strength [13]. The indirect effect of interactions compared with the
direct effect from a single factor may have a greater impact on the urban forest cool island effect (the
“cool-island effect refers to the air temperature of the surrounding area being cooler than that of the
central area” [14]). However, interactions are difficult to quantify by using empirical equations or
routine experimental methods. Environmental factors affecting the surface temperatures of urban
forest canopies (STUFC) include biotic factors (e.g., dominant tree species, forest age, and canopy
density) and abiotic factors (e.g., area, altitude, slope gradient, and site quality) [4,15]. Knowledge
about interactions between these factors can improve simulations and predictions of the spatial patterns
of urban cool islands.

Clarifying the mechanisms that influence the STUFC requires applying a combination of research
methods to quantify the spatial heterogeneity of STUFC [16,17]. Remote sensing at various resolutions,
ground surveys, and spatial statistical models have all been used by researchers to study how STUFC
relates to environmental factors such as forest area, canopy density, vegetation richness, and vegetation
index [2,18–20]. Overall, these studies indicate that the transpiration cool island effect of urban forest
is complex and is influenced by many environmental factors. However, only a few studies have
comprehensively investigated the quantitative relationship between multiple environmental factors
and STUFC [21]. The influence of these multiple environmental factors on STUFC at the urban scale
and the strength of the interactions between these factors remain unclear [22]. Therefore, a quantitative
comprehensive study of STUFC spatial heterogeneity and its determining factors is in order.

The present study aims to clarify how multiple environmental factors interact and influence the
STUFC. We focus on the interactions that occur in urban forest land and trees in park aggregations
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because many scholars have confirmed that urban forest land and trees in parks are the most
important components that affect the urban cool island effect [23–25]. Combining Landsat-5/8
Thematic Mapper (TM) images with forest-management planning inventory (FMPI) data, we obtain
the spatial distribution of STUFC on an urban scale. To accomplish these aims, we fuse multisource
data (including remote sensing imagery and ground observations) and use spatial statistical analysis
methods to determine the mechanisms. As a case study, we tested this method by using the urban
forest of Jinjiang as a Chinese city representative of one that has undergone rapid urbanization in recent
years. We address two main questions: (1) Which direct environmental factors most strongly influence
the STUFC? (2) How do interactions between multiple environmental factors influence the STUFC?

2. Materials and Methods

2.1. Overview

To reveal the factors that influence the STUFC in cluster regions (hot and cold spots, the area
with statistical significance that was calculated by using a spatial statistical method), we developed a
hierarchical spatial statistical analysis method that could be widely applied elsewhere. The method
consists of three main steps (Figure 1): First, we built up a raster and vector database for the integration
and fusion of multiple sources of spatial data (including forest-management planning inventory
(FMPI), digital elevation models, population, and remote sensing images). Second, we calculated
the spatial distribution of STUFC from thermal remote sensing images and then applied hot-spot
analysis with an optimal spatial analysis threshold to locate the hot and cold spots of the STUFC.
Third, focusing on clustering regions, we qualitatively analyzed the interaction mechanisms related to
multiple environmental factors as they affect STUFC. For an overview of the data sources, and other
research methods, please see Appendix A in the Supplementary Materials.

Figure 1. Flow chart describing the proposed methodology. The data were processed by combining
Landsat-5/8 TM remote sensing images, FMPI, and the GeogDetector model.

2.2. Study Area

Jinjiang is located in southeastern China; its geographical coordinates are longitude
118◦24′–118◦43′, northern latitude 24◦30′–24◦54′ (Figure 2). The geographical location of Jinjiang
is in the subtropical zone. This city is subject to the oceanic monsoon climate of the southern subtropics,
which is characterized by high air temperature, rich light and heat, and abundant precipitation.
The mean annual temperature is 18.3–21.3 ◦C; relative humidity is 76%, and mean annual precipitation
is approximately 1130–1820 mm. The terrain is generally smooth and consists mainly of plains and
hills. The elevation varies from sea level to 518 m.
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Figure 2. Map of study area. The inset shows the location in China.

2.3. Creation of a Multisource Spatial Database

Three types of data were used in this study, which covers the years 2004 and 2014. The first
type was the FMPI data with 90% sampling accuracy, which was acquired from field surveys and
observations and included the graphical data and the corresponding attribute database in 2004 and
2014. FMPI data, which are compiled by the national forestry bureau and its affiliations in China,
provide forest ground survey data on a regional scale. The attribute database contains data on urban
forest stands, soil, topography, and other environmental factors. The FMPI data used herein are
extracted from the provincial FMPI data based on the administrative boundaries of city and mainly
include urban forest land and trees in parks, but not trees along streets and water courses or trees
in home gardens. The FMPI data for Jinjiang County were provided by the Forestry Department of
Fujian Province, China.

By using large-scale sampling methods, this forest resource inventory collects detailed information
about the characteristics and conditions of each type of forest. In each forest patch, only trees with a
minimum diameter at breast height (DBH) of 8 cm were sampled. The forest inventory investigation
recorded the forest data and graphical data from each forest patch to establish forest files for resource
management, reasonable management, and continuous use. FMPI data contain (1) stand data (age,
patch area, plantation density, DBH, tree height, and volume), (2) soil data (soil depth, humus depth,
and site index), and (3) topographical data (elevation, slope degree, slope direction, and slope position).
All factors were measured for all units within each forest patch, with the average being used as the
factor value for each patch.

The accuracy of forest patch attributes was tested based on differences in volumes by combining
systematic sampling and stratified sampling. According to the data, forest patches varied in size
from 0.05 to 1400 ha in 2004 and from 0.01 to 1029.18 ha in 2014 and the average area went from
9.64 ± 63.08 ha to 3.90 ± 30.65 ha over the same period (mean ± SD). In 2004, 410.821 ha of a total
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10,896.937 ha in patches were in small patches (<1.44 ha); in 2014, 887.352 ha of a total of 9565.680 ha
in patches were in small patches. The total amount of Jinjiang urban forest were 2777 × 104 trees in
2004 and 2331 × 104 trees in 2014. The stem density was 2471 trees·ha−1 in 2004 and decreased to
2082 trees·ha−1 in 2014. The average DBH grew from 5.73 cm in 2004 to 10.30 cm in 2014. The main
species of urban forest include Pinus massoniana, Acacia confusa, Eucalyptus grandis, Casuarina equisetifolia
and Dimocarpus longan. From 2004 to 2014, the main species were Acacia confusa and Eucalyptus grandis
(the other species decreased in number). On average, in 2004 and 2014, 97.73% and 82.45%, respectively,
of all urban forest in Jinjiang was composed of small trees (with DBH < 15 cm) (Figure 3).

The second data type that characterizes anthropogenic activity contains the population density
distribution raster data and the percent of impervious area represented by the buffer circles around
the forest patches [26], which were calculated by using statistic year books and land-use vector data,
respectively. The kernel density tool in the Arctool box of Arcmap 10.1 was used to interpolate the
population density. In terms of the patch location, a 100 m buffer was appropriate, and the impervious
surface area was calculated by using the spatial calculation tool of Arcmap.

The third data type was inverted STUFC maps from Landsat-5/8 TM remote sensing images in
summer. The summer season (July to September) is the optimal time to study the urban forest cool
island effect. The dense canopy provides the largest temperature gap between STUFC and non-forest
land surface temperature. Moreover, people focus on the cooling effect of forest patches during summer
more than during the other seasons. Because the heat island affects human health relatively little in
winter, spring, and autumn, the few tree leaves that remain in these seasons provide only limited
shade. Thus, images acquired during the summer season are ideal to discern STUFC variations and
determine the contributions of various environmental factors over different years. For more detailed
information, see Appendix A in the Supplementary Materials.

Figure 3. Changes in FMPI data in Jinjiang City between 2004 and 2014.
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2.4. Inversion of Surface Temperature of Urban Forest Canopies

The STUFCs were inverted from the thermal infrared band (10.40–12.50 µm) of Landsat-5 TM
images (Row 119/Path 43) acquired on 26 July 2004, 11 August 2004, and 12 September 2004 and
of Landsat-8 images acquired on 6 July 2014, 22 July 2014 and 7 August 2014. The six images were
acquired at approximately 10:00 a.m. local time, and the study area was always under clear atmospheric
conditions. The average summer STUFC patches were calculated by using a single channel algorithm
in terms of the three images of the same year [27].

First, TM and thermal infrared (TIR) data were applied to correct radiometric and geometrical
distortions to ensure accurate calculations. The root mean square errors of the comparison with the
ground control points were less than 0.50 pixels for each of the six images. Second, we used atmospheric
correction methods for the data from the TM and TIR to eliminate how view angle and atmosphere
affect surface reflectance. Third, we used the cubic convolution interpolation method to resample
the thermal infrared band of Landsat 8 resolution from 100 to 30 m and of Landsat 5 resolution from
120 to 30 m so as to satisfy the resolution of the visible spectrum. Fourth, the STUFC was estimated
by using the mono-window retrieval algorithm. Finally, the STUFC was normalized to evaluate the
interactions among the multiple factors influencing urban forest temperature. Nondimensionalization
can eliminate the influence of viewing angle and of the different image-acquisition times. A relative
STUFC index TR, proposed by Zhao et al. [28], was used to normalize STUFC as follows:

TR = (STUFC − Tb)/Tb,

where STUFC is the surface temperatures of urban forest canopies of each pixel and Tb is the
background surface temperature, which is defined as the average temperature of the study-area
images. For details of the processes, see Appendix A in the Supplementary Materials.

Accuracy Assessment

The STUFC is linearly related to the near-surface air temperature [29], which provides a basis for
testing remote sensing retrieval of STUFC. Thus, we used the daily average land surface temperature
data measured at eight meteorological stations in Jinjiang to evaluate the accuracy of remote sensing
retrieval of STUFC. We used the Pearson correlation coefficient to evaluate the linear relationship
between observed daily-average land surface temperature data and STUFC estimated from remote
sensing images and FMPI. The results show that STUFC correlate significantly with land surface
temperature from meteorological stations (Pearson correlation coefficient of 0.903; p < 0.01; see Figure 4).

Figure 4. Comparison of STUFC between on-site observations and Landsat data.
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2.5. Spatial Statistical Analysis

2.5.1. Determination of Optimal Threshold Distance

To determine the optimal distance for distinguishing the surrounding patches, we calculated
the local Getis–Ord Gi* statistics with threshold distances varying from 250 to 3500 m in 250 m
intervals. The hot and cold spots and the number of neighboring FMPI polygons under these different
threshold distances were used to determine the optimal threshold distance for spatial autocorrelation
analysis [30,31]. The total area of hot and cold spots was relatively stable and the minimum number of
neighbors for each patch always exceeded eight, which satisfies the normal distribution assumption of
autocorrelation. Based on the Gi* normality assumption and the variation at every local neighborhood
threshold, we determined the optimal threshold to be 2250 m for both 2004 and 2014 (see Table 1 and
Figure S1 in Appendix C in the Supplementary Materials).

Table 1. Number of neighboring patches found around each hot and cold spot.

Threshold
Radius (m)

Mean Neighbors (SD) Minimum (Maximum)
Neighbors

Hot & Cold Spots
Cover % of Total Area

2004 2014 2004 2014 2004 2014

250 11.79 (6.19) 11.52 (6.50) 1 (29) 1 (41) 21.41 11.06
500 21.49 (11.22) 26.03 (13.84) 1 (109) 1 (70) 45.83 33.51
750 32.31 (17.48) 38.97 (20.33) 2 (139) 1 (114) 58.21 42.51
1000 44.68 (23.90) 61.05 (29.62) 3 (179) 2 (156) 64.96 50.23
1250 59.33 (31.07) 79.96 (37.10) 3 (219) 3 (205) 69.39 55.01
1500 75.99 (38.69) 106.28 (47.09) 3 (261) 5 (231) 73.61 58.5
1750 94.50 (46.45) 132.44 (55.23) 3 (302) 5 (284) 77.16 61.91
2000 114.21 (54.56) 163.49 (66.97) 3 (355) 10 (332) 80.58 62.01
2250 138.45 (60.45) 197.08 (77.97) 8 (285) 12 (403) 82.94 62.55
2500 157.14 (70.66) 231.47 (89.36) 14 (441) 16 (473) 84.69 62.97
2750 181.08 (79.60) 267.98 (95.28) 8 (493) 18 (543) 85.34 63.25
3000 206.54 (88.46) 309.02 (113.87) 10 (548) 26 (586) 84.75 62.89
3250 233.41 (97.31) 349.45 (119.19) 12 (592) 27 (640) 84.73 63.07
3500 261.04 (104.94) 395.31 (139.24) 12 (626) 37 (690) 85.48 65.37

2.5.2. Statistical Analysis Based on Global Moran’s I and Local Getis–Ord Gi*

The global Moran’s I and the local Getis–Ord Gi* indexes were used to determine the statistical
significance and to identify the spatial positioning of hot and cold spot cluster regions of STUFC on an
optimized threshold distance [32,33]. The geographic analysis and extension module of Arcmap 10.1
was used to calculate both of these indexes.

The most commonly used index in spatial autocorrelation analysis is global Moran’s I [34],
which uses the following formula:

I =
n ∑n

i=1 ∑n
j=1

(
Xi − X

)(
Xj − X

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

i=1
(
Xi − X

)2 , (1)

where n is the number of observed space units (polygonal region or point), X is the statistical mean, Xi
and Xj are the observed values in regions i and j, respectively, and Wij is the weight of region i relative
to region j.

This study uses the spatial statistical method of local Getis–Ord Gi* to estimate the ratio of local
values with different weights to the overall value based only on distance measurement standards,
without considering the condition of boundary adjacency:

G∗i (d) =
∑n

i=1 Wij(d)Xj

∑n
j=1 Xj

(2)
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where d is the region size, Wij is the weight matrix of the sample points and region j, and x
quantifies importance.

To compose a graph of STUFC clusters, the local Getis–Ord Gi* index was used with an optimal
threshold distance of 2250 m. Regions with an absolute value Z greater than 1.65 (p < 0.1) calculated by
Arcmap 10.1 [35] were considered significant. The significant areas were divided into hot spots and
cold spots according to their Z score (the Z score is the standard deviation), and the remaining regions
were considered nonsignificant [32]. Hot spots (Z ≥ 1.65) are areas of statistically significant clustering
of high STUFC (90% confidence interval). Cold spots (Z≤−1.65) are locations of statistically significant
clustering of low STUFC (90% confidence interval). Nonsignificant areas are defined as locations
showing no significant spatial correlation (1.65 > Z > −1.65). See Appendix A in the Supplementary
Materials for more information.

2.5.3. GeogDetector Modeling

The objects of an eco-environmental study are always characterized by spatial heterogeneity
or autocorrelation. Heterogeneity may be detected by comparing the sum of the spatial variance of
sub-areas with that of the total study area. The spatial correlation is based on the similarity of the
spatial distributions between two factors. The GeogDetector model (http://www.geodetector.cn/)
uses heterogeneity and autocorrelation to evaluate the contribution of the factors based on their q
values [36]. It quantifies the interaction between factors X1 and X2 by comparing the sum of their q
values with that of a new factor X3 = X1 ∩ X2, which it constructs [37]. Unlike basic statistical and
geographic modeling tools that constrain data input, GeogDetector processes both categorical and
numeric variables in parallel. To summarize, we identified the most dominant environmental factors
affecting the STUFC and their impacts and also quantified the interactions between them.

To begin the modeling process, we assumed that multiple environmental factors jointly influence
the STUFC and that the spatiotemporal distribution reflects these environmental factors. First,
the average values of the attributes of the factors were calculated in terms of the forest patches,
and then the values were classified according to the classification criteria of the FMPI documentation
(e.g., SDe) [38]. The factors and STUFC values that were not classified in the manual were classified by
using the Natural Breaks (Jenks) method (e.g., patch area) [39]. Finally, we regarded the normalized
STUFC value as the explained variable and the classified environmental factor values as the explanatory
variables and put them into the GeogDetector model to do the analysis. For additional details,
please see Appendix A in the Supplementary Materials.

3. Results

3.1. The Surface Temperatures of Urban Forest Canopies, Stand Structure, and Anthropogenic Activity

The spatial distribution of STUFC reveals characteristics of spatial autocorrelation, which departs
from the basic assumption that the traditional statistical methods are independent of each other.
Therefore, we use herein spatial statistical methods that integrate spatial information into classical
statistical analysis to reveal spatial distributions, patterns, processes, and relationships involving
STUFC. This approach also clarified the spatial correlation between location-related STUFC and
multiple influencing factors. The aggregated STUFC areas (absolute value of Z score ≥ 1.65 represents
statistical significance) identified through the spatial statistical method were more suitable than the
non-aggregated areas (1.65 > Z Score > −1.65) to determine the relationship and mechanisms.

Landsat 5 and 8 images from 2004 and 2014 were integrated with the corresponding FMPI data
(there were 3300 stand patches in 2004 and 5963 stand patches in 2014). For each of these two years,
a multisource dataset was generated from the same boundaries and coordinate system, in which
the STUFC of patches corresponded to certain environmental factors. In 2004 and 2014, the relative
average STUFC was −0.020 and −0.061, respectively (Figure 5).

http://www.geodetector.cn/
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Figure 5. Spatial distribution of temperature in 2004 and 2014 obtained using a 2250 m threshold and
local Getis–Ord Gi* statistics. Red (GiZscore ≥ 1.65) indicates a hot spot, blue (GiZscore ≤ −1.65)
indicates a cold spot, yellow (1.65 > GiZscore > −1.65) indicates a nonsignificant area, and gray
indicates altitude. The numbers indicate the main regions of mutual conversion of cold spots, hot spots,
and nonsignificant areas.

From 2004 to 2014, as the urban forest structure changed, the standardized STUFC changed
accordingly. Specifically, upon using the global Moran’s I, our analysis of STUFC was spatially
autocorrelated, and its spatial clustering decreased (Moran’s I = 0.476 in 2004 and 0.178 in 2014;
see Table 2). The total area of urban forest stands decreased by 1331.26 ha from 2004 to 2014 (10,896.94 ha
in 2004; 9565.68 ha in 2014), while the average forest age increased by 5.09 years during the same
time period (15.03 ± 7.91 years in 2004; 20.12 ± 10.86 years in 2014), and the average canopy density
increased by 0.046 (0.31 in 2004; 0.39 in 2014). Urban forest stands became more fragmented between
2004 and 2014; the shape index of urban forest patches decreased from 301.5 to 182.4. The areas of
dominant tree species such as Dimocarpuslongana, Casuarina equisetifolia, Acacia confusa, Pinusmassoniana,
Eucalyptus grandis, and other broadleaved trees also changed. For example, the total stand areas of
D. longana, C. equisetifolia, and P. massoniana decreased by 14.89%, 0.94%, and 0.96%, respectively,
and the total urban forest areas of A. confusa and E. grandis increased by 4.69% and 18.13%, respectively.
See Figures S2 and S3 in Appendix C of the Supplementary Materials for the variation of the urban
forest characteristics.

Table 2. Global spatial autocorrelation statistics (Moran’s I) of STUFC in 2004 and 2014.

Year 2004 2014

Moran’s Index 0.476 ** 0.178 **
Z-score 129.788 74.675
Pattern Clustered Clustered

Note: p-values of all areas are <0.001 in 2004 and 2014; ** indicates high significance.

To quantify the effect of anthropogenic activity on STUFC population density and proportion
of impervious area were used to represent anthropogenic activity. The average citywide population
density of Jinjiang in 2004 was 1099.0 ± 511.4 people ha−1 versus 1187.3 ± 602.0 people ha−1 in 2014
(Figure 6). The aggregation degree (Moran’s I) of the STUFC decreased from 0.731 in 2004 to 0.642 in
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2014. The impervious surface area surged. The proportion of impervious surface area within the 100 m
buffer circle increased from 28.13 ± 24.85% to 42.45 ± 15.95%. These changes are very significant in
our statistical analysis (p < 0.001, t-test).

Figure 6. Population density in different cluster regions classified with local Getis–Ord Gi* statistics,
which indicate population changes between 2004 and 2014.

3.2. Mechanisms that Influence Surface Temperatures of Urban Forest Canopies

The mechanism influencing STUFC contains two parts: direct and indirect effects. Overall,
although the dominant environmental factors affecting the direct effects on STUFC in different periods
varied in the two periods, forest-stand groups remained the dominant environmental factors. Specially,
forest stand and topography groups were the dominant environmental factors that influenced STUFC in
2004. In 2014, the dominant environmental factors were transformed to forest stand and anthropogenic
activity groups. Specifically, the patch area and dominant tree species, which, compared to other
environmental factors, were the main factors contributing to STUFC clustering (Figure 7, Table 3).
The GeogDetector model revealed the mechanisms by which environmental factors impact the STUFC.

To further clarify the mechanisms in the hot and cold spots of STUFC, we used local Getis–Ord
Gi* statistics. The patch area and dominant tree species were the main factors contributing to STUFC
clustering (Figure 7, Table 3). The dominant species not only exerted a strong direct effect, but
also interacted intensely with other environmental factors in cold and hot spots in the two periods.
Among the different cluster regions and during the different time periods, both linear and nonlinear
interactions were observed between the 12 selected factors we studied: q value of factor 1 ∩ q value
of factor 2 > the sum of the q values of factors 1 and 2 (effect of factor 1 and of factor 2); q value of
factor 1 ∩ q value of factor 2 > q value of factor 1 or q value of factor 2 (effect of factor 1 or of factor 2).
See Figure 8 and Figures S4–S6 in Appendix C of the Supplementary Materials.

Meanwhile, environmental factors had varying impacts on STUFC in different clustering regions.
For example, in 2014, the main influential factors in hot spots were dominant tree species (q value
represents power of the determinant indicator of Geodetector model, q = 0.019), patch area (q = 0.013),
and ISP100 (“ISP100” refers to the percent of impervious surface area within a 100 m radius of the patch
edge.) (q = 0.012). The main influential factors in cold spots were ISP100 (q = 0.045), dominant tree
species (q = 0.032), stand age (q = 0.016), and slope position (q = 0.016). Furthermore, the environmental
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factors with interactions varied during different time periods. For instance, for the cold-spot area,
the major interaction factors changed from DS in 2004 to ISP100 in 2014 (see Figure 7 and Figures S4–S6
in Appendix C of the Supplementary Materials).

Figure 7. Degree of influence of forest attributes, soil, topography, and population on STUFC in Jinjiang
City. PA, patch area (i.e., forest-stand area); DS, dominant species; CD, canopy density; SA, stand age
(i.e., average forest-stand age); ShI, shape index; SI, site index; SD, soil depth; HD, humus depth; ELE,
elevation; SDe, slope degree; SPo, slope position; SDi, slope direction; PD, population; ISP100 percent
of impervious surface within 100 m radius.

Table 3. Degree of influence of urban forest attributes, soil, topography, and population on STUFC in
hot spots (HS), cold spots (CS), and nonsignificant regions (NS) in Jinjiang, China.

ALL HS CS NS

2004 2014 2004 2014 2004 2014 2004 2014

Forest
Characteristics

PA 0.242 0.024 0.056 0.013 0.120 0.011 0.014 0.020
DS 0.124 0.028 0.056 0.019 0.093 0.032 0.085 0.013
CD 0.013 0.003 0.025 0.006 0.018 0.007 0.039 0.005
SA 0.004 0.005 0.011 0.004 0.007 0.016 0.001 0.004

Soil

ShI 0.123 0.02 0.050 0.006 0.092 0.005 0.018 0.015
SiI 0.079 0.004 0.001 0.001 0.039 0.004 0.006 0.003
SD 0.045 0.007 0.011 0.001 0.045 0.000 0.005 0.007
HD 0.001 0.001 0.000 0.000 0.007 0.015 0.004 0.002

Topography

ELE 0.139 0.012 0.006 0.005 0.099 0.003 0.005 0.006
SDe 0.059 0.005 0.012 0.005 0.026 0.005 0.001 0.002
SPo 0.048 0.003 0.023 0.006 0.027 0.016 0.010 0.004
SDi 0.018 0.001 0.031 0.007 0.013 0.015 0.021 0.006

Anthropogenic
activity

PD 0.07 0.015 0.011 0.006 0.053 0.014 0.007 0.009
ISP100 0.023 0.027 0.013 0.012 0.108 0.045 0.021 0.030
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Figure 8. Influence (q value) of interactions in cold spot areas in 2004 and 2014.

4. Discussion

4.1. Mechanisms that Impact the Surface Temperature of Urban Forest Canopies

The quantitative analysis of the GeogDetector spatial statistical model shows that the
dominant species factor explained more STUFC heterogeneity than the other environmental factors,
which indicates that differences in transpiration and shading between different tree species are the
dominant reasons for STUFC on the city scale. The above result is consistent with the conclusion of
green roof-temperature-reduction services [40]. The differences between transpiration and shading
is mainly related to stomatal conductance and biological traits of leaves [41]. Studies mainly focus
on the variational characteristics of stomatal conductance of different plant leaves and the influence
of environmental factors on stomatal conductance [42–46]. However, the physiological mechanisms
of leaf stomatal behavior are still not fully understood [46]. The comprehensive effects of multiple
environmental factors on stomatal conductance have not been quantified, resulting in the use of
fairly simple model assumptions and climate parameters in ecological-process models to calculate the
transpiration rate of vegetation types [47].

Future research should thus consider the interaction between environmental factors and their
cumulative effect on stomatal conductance [43,48]. We quantified the effects of tree species and multiple
environmental factors on the heterogeneity of STUFC and inferred that the stomatal conductance
of individual plants differing from the synergistic effects of multiple environmental factors, might
result in differences in the transpiration of different tree species. These differences are cumulatively
reflected on the regional scale and have larger impacts on the heterogeneity of STUFC than other
environmental factors.

Furthermore, environmental factors not only directly affect the stomatal conductance of plant
leaves, but also indirectly affect the shading by changing the biological characteristics of the plant’s
morphology, structure, physiology, and phenology [49]. Studies have confirmed that the effect of
shading by trees depends on the canopy structure, such as canopy size, tree shape, canopy density,
branching pattern, and leaf density (e.g., leaf area and average leaf dip angle), the optical properties of
the leaves, such as size, length, width, thickness, texture, and brightness, and the topography (slope and
aspect relative to direction of sunlight) [50–53]. These biological traits on the regional scale correlate
significantly with environmental factors [54]. However, the research methods are influenced by three
main factors, including the size of the study area, the comparability of trees, and the availability of
spatial attribute data. Most regional-scale surveys are based on the same environmental gradient
consider the different species as a general object to study the relationship between biophysical traits,
environmental factors, and shading effects, ignoring differences in the biological traits of various tree
species [55]. Tsukaya emphasized that the biological characteristics of different tree species led to
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different response magnitudes and mechanisms in terms of changes in environmental factors [56].
For example, the blade size is the result of a combined effect of multiple environmental factors. Smaller
blades reduce the boundary-layer resistance and heat loss, which is beneficial to maintain proper
blade temperature in arid environments. The analysis of factors through the GeogDetector model,
which breaks the basic assumptions of sample independence used in traditional statistical methods
and insert spatial factors into the research model. We analyzed how biological differences affect
shading on a regional scale. Such an analysis reveals that, compared with other environmental factors,
the biological heterogeneity of tree species makes a major contribution to the STUFC heterogeneity.

Meanwhile, we should clearly understand that, at the regional scale, the formation of
heterogeneity of STUFC is driven by the major factors and the combined effects of environmental
conditions and various biological processes. The GeogDetector model indicates that the spatial
interaction between various environmental factors and their linearly or nonlinearity enhanced STUFC
in hot and cold spots. Thus, the synergetic interaction between two factors can have a greater influence
than the direct effect of a single environmental factor, and the combined effect may even be greater
than the sum of the direct effects of the two factors. For instance, in cold spots, the influence of
DS and ISP100 impacts the STUFC in the two years. The strongest interaction between the two
factors was DS ∩ ISP100 in 2004 but, in spite of the strong interaction ISP100 ∩ DS, this changed in
2014 to ISP100 ∩ SA. As seen in Figure 6, the impervious surface area in Jinjiang city expanded
significantly from 2004 to 2014, which might explain the enhanced effect of ISP100 not only in
cold spots but also in the hot spots, nonsignificant areas, and in the entire study area. As urban
ecological processes continue, the evaluation of such interactions will become even more important [57].
Most often, previous studies of urban land surface temperature and its mechanisms have used classical
multivariate statistical analyses to quantify the correlations between anthropogenic activity and land
surface temperature [4,20]. Attributes such as landscape composition (e.g., vegetation coverage,
impermeability, water proportion), spatial configuration (e.g., shape index, Shannon diversity index),
and land surface temperature have been investigated, but these studies have ignored the complex
effects and interactions of other environmental factors (e.g., soil and topography) [58]. Moreover,
spatial analysis is often neglected in these statistical analyses, whereas nonspatial characteristics and
attributes are included. The GeogDetector model uses spatial variance to evaluate geospatial data,
in contrast with general statistical analysis methods. Therefore, this model is able to clarify the effects
of geographical spatiotemporal changes caused by, and multiple environmental factors combined with,
anthropogenic activity on STUFC.

In summary, our results indicate that, in 2004 and 2014, for the STUFC cluster regions (hot spots
and cold spots), the interaction between dominant factors that have direct effects and other factors (e.g.,
dominant species or patch area ∩ other factors) affecting STUFC produces a stronger effect than do the
other environmental factors (e.g., canopy density ∩ stand age). The interaction intensity changes with
the progress of urbanization, which shows that, after considering the direct and indirect interactive
effects, we should focus on the dominant factors that cause direct effect in the future planning of
urban green space and the structural design ecological process models. These are the most important
factors affecting the STUFC, whereas the interactions between them would have strong spatial and
temporal heterogeneity.

This is consistent with the hypothesis of the variability of multi-factor interaction strength [54].
Specifically, the type of interaction may vary by category (such as linear, nonlinear, and independent),
intensity (such as attenuation and enhancement), and symmetry (such as symmetric and asymmetric)
based on the characteristics of species or individuals. However, previous studies suffer from knowledge
deficits caused by their neglect of interaction between influencing factors that cause spatial-temporal
heterogeneity. Recent quantitative studies of interactions have used control experiments and model
simulations at the plot and regional scales [59–62]. The key challenge to reveal the mechanisms
of macro-ecosystem ecological function is to quantify the interaction process of influential factors
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across temporal and spatial gradients, and to clarify the temporal and spatial heterogeneity based on
quantitative results.

4.2. Recommendations for Further Study

Considering our research results, we advance two recommendations: First, STUFC research
should combine the respective advantages of remote sensing, ground surveys, and spatial statistical
analysis to solve regional-scale urban environmental problems and to elucidate how interactions
between multiple environmental factors affect STUFC information pertaining to macro-spatial patterns
and micro-forest stands must be integrated in new models, and a multi-source database at a unified
spatiotemporal scale must be built. Second, the influential factors in cluster regions of STUFC must
be identified in land surface temperature studies. As the dominant factor exerting direct and indirect
effects on STUFC, tree species should be considered in future urban forest planning. Future quantitative
studies on heterogeneity should be carried out on different spatiotemporal scales, in different cities
and seasons, and with remote sensing imagery at various resolutions. This study reveals several
environmental factors that are correlated with STUFC in urban areas (e.g., dominant tree species,
stand area). However, the limited environmental factors selected in this study cannot fully express
the driving mechanisms behind STUFC. Besides, the study is aimed at urban forest land and trees in
parks and does not cover trees along streets and dispersed trees in residential land. In fact, although
the number of trees along streets and dispersed trees in residential land is much lower than that in
urban forest land and trees in parks, it still plays a role in the urban scale cold island effects. However,
the resolution in the thermal band for Landsat images is 100–120 m, which is much greater than a street
width or a residential green space. The mixed-pixel problem causes the contribution of the PA factor to
the STUFC to be underestimated. The smaller the patch, the higher will be the proportion of these
mixed pixels relative to pure pixels. Because of this resolution effect, the smaller patches might appear
warmer than the large patches. Future research may consider investigating how these components of
urban forest influence the cool island effect and use higher-resolution images (e.g., thermal images
from unmanned aerial systems [63]).

5. Conclusions

Understanding the interaction between landscape patterns and processes should be reconsidered
by using methods of modeling and analysis that use multiple sources of observation data and
multi-disciplinary approaches.

This study advances traditional methods of analysis in this field by developing a novel modeling
method that combines remote sensing imagery, FMPI data, spatial statistical modelling, and multiple
environmental factors. It then integrates them into a spatial dataset with a unified scale to model
urban forest regions with strong spatial heterogeneity. The results demonstrate that the degree of
spatial clustering of STUFC decreases during rapid urbanization. Although different environmental
factors exert different influences on STUFC, in two periods with different hot spots and cold spots,
the patch area and dominant tree species are the main factors contributing to land surface temperature
clustering in urban forest. The interaction between multiple environmental factors increases STUFC,
both linearly and nonlinearly.

In conclusion, the combination of multidisciplinary methods (e.g., remote sensing images, ground
observations, and spatial statistical models) helps reveal the mechanism of STUFC on an urban scale.
This is done by quantitatively expressing nonlinear interactive systems on the urban scale.
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method to retrieve land surface temperature from the landsat-8 thermal band. Remote Sens. 2018, 10, 431.
[CrossRef]

8. Yuan, C.; Zhang, Y.; Liu, Z. A survey on technologies for automatic forest fire monitoring, detection,
and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015, 45.
[CrossRef]

9. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using landsat data.
Remote Sens. Environ. 2012, 122, 66–74. [CrossRef]

10. Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a uav-lidar system with application to forest
inventory. Remote Sens. 2012, 4, 1519–1543. [CrossRef]

11. Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact
on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [CrossRef]

12. Poisot, T.; Stouffer, D.B.; Gravel, D. Beyond species: Why ecological interaction networks vary through space
and time. Oikos 2015, 124, 243–251. [CrossRef]

13. Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Don Carlos, A.; Crooks, K.R. A conceptual
model for the integration of social and ecological information to understand human-wildlife interactions.
Biol. Conserv. 2018, 225, 80–87. [CrossRef]

14. Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and
its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [CrossRef]

15. Ren, Y.; Deng, L.Y.; Zuo, S.D.; Luo, Y.J.; Shao, G.F.; Wei, X.H.; Hua, L.Z.; Yang, Y.S. Geographical modeling of
spatial interaction between human activity and forest connectivity in an urban landscape of southeast China.
Landsc. Ecol. 2014, 29, 1741–1758. [CrossRef]

16. Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256.
[CrossRef]

http://dx.doi.org/10.1007/s10661-015-4817-7
http://www.ncbi.nlm.nih.gov/pubmed/26318320
http://dx.doi.org/10.1002/2015JD024354
http://dx.doi.org/10.5194/bg-11-4115-2014
http://dx.doi.org/10.1016/j.landurbplan.2014.04.018
http://dx.doi.org/10.1016/j.apgeog.2011.06.015
http://dx.doi.org/10.3390/rs10030431
http://dx.doi.org/10.1139/cjfr-2014-0347
http://dx.doi.org/10.1016/j.rse.2011.08.024
http://dx.doi.org/10.3390/rs4061519
http://dx.doi.org/10.1016/j.rse.2015.12.040
http://dx.doi.org/10.1111/oik.01719
http://dx.doi.org/10.1016/j.biocon.2018.06.020
http://dx.doi.org/10.1002/joc.4747
http://dx.doi.org/10.1007/s10980-014-0094-z
http://dx.doi.org/10.1016/j.ecolind.2016.02.052


Remote Sens. 2018, 10, 1814 16 of 18

17. Heino, J.; Melo, A.S.; Bini, L.M.; Altermatt, F.; Al-Shami, S.A.; Angeler, D.G.; Bonada, N.; Brand, C.;
Callisto, M.; Cottenie, K.; et al. A comparative analysis reveals weak relationships between ecological factors
and beta diversity of stream insect metacommunities at two spatial levels. Ecol. Evol. 2015, 5, 1235–1248.
[CrossRef] [PubMed]

18. Zhao, J.; Liu, X.; Dong, R. Landsenses ecology and ecological planning towards sustainable development.
Int. J. Sustain. Dev. World Ecol. 2016, 293–297. [CrossRef]

19. Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing:
Method and test. Landsc. Urban Plan. 2015, 134, 66–75. [CrossRef]

20. Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island:
Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land
surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [CrossRef]

21. Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing
the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona.
Landsc. Ecol. 2013, 28, 271–283. [CrossRef]

22. Buyantuyev, A.; Wu, J.G. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations
in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [CrossRef]

23. Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer
climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [CrossRef]

24. Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from
Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [CrossRef]

25. Kong, F.; Yin, H.; Wang, C.; Cavan, G.; James, P. A satellite image-based analysis of factors contributing to
the green-space cool island intensity on a city scale. Urban For. Urban Green. 2014, 13, 846–853. [CrossRef]

26. Lu, D.S.; Weng, Q.H. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006,
102, 146–160. [CrossRef]

27. Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from
landsat tm data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746.
[CrossRef]

28. Zhao, J.Z.; Dai, D.B.; Lin, T.; Tang, L.N. Rapid urbanisation, ecological effects and sustainable city construction
in Xiamen. Int. J. Sustain. Dev. World Ecol. 2010, 17, 271–272. [CrossRef]

29. Brabyn, L.; Zawar-Reza, P.; Stichbury, G.; Cary, C.; Storey, B.; Laughlin, D.C.; Katurji, M. Accuracy assessment
of land surface temperature retrievals from landsat 7 ETM + in the Dry Valleys of Antarctica using iButton
temperature loggers and weather station data. Environ. Monit. Assess. 2014, 186, 2619–2628. [CrossRef]
[PubMed]

30. Ord, J.L.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application.
Geogr. Anal. 1995, 27, 286–306. [CrossRef]

31. Barrell, J.; Grant, J. Detecting hot and cold spots in a seagrass landscape using local indicators of spatial
association. Landsc. Ecol. 2013, 28, 2005–2018. [CrossRef]

32. Mahboubi, P.; Parkes, M.; Stephen, C.; Chan, H.M. Using expert informed gis to locate important marine
social-ecological hotspots. J. Environ. Manag. 2015, 160, 342–352. [CrossRef] [PubMed]

33. Ren, Y.; Deng, L.Y.; Zuo, S.D.; Song, X.D.; Liao, Y.L.; Xu, C.D.; Chen, Q.; Hua, L.Z.; Li, Z.W. Quantifying the
influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016,
216, 519–529. [CrossRef] [PubMed]

34. Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981.
35. Esri. How Spatial Autocorrelation (Global Moran’s I) Works. Available online: http://resources.arcgis.com/

en/help/main/10.2/#/na/005p0000000t000000/ (accessed on 26 August 2018).
36. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based

health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J.
Geogr. Inf. Sci. 2010, 24, 107–127. [CrossRef]

37. Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33,
114–115. [CrossRef]

38. Fujian Forestry Department Forest Resource Management Center. Technical Regulations for Investigation
and Design of Forest Resources in Fujian. 2006. Available online: http://www.fjlgy.com/SView347.aspx
(accessed on 26 August 2018).

http://dx.doi.org/10.1002/ece3.1439
http://www.ncbi.nlm.nih.gov/pubmed/25859329
http://dx.doi.org/10.1080/13504509.2015.1119215
http://dx.doi.org/10.1016/j.landurbplan.2014.10.012
http://dx.doi.org/10.1007/s10980-013-9950-5
http://dx.doi.org/10.1007/s10980-012-9833-1
http://dx.doi.org/10.1007/s10980-009-9402-4
http://dx.doi.org/10.1080/014311698214884
http://dx.doi.org/10.1016/j.landurbplan.2013.12.008
http://dx.doi.org/10.1016/j.ufug.2014.09.009
http://dx.doi.org/10.1016/j.rse.2006.02.010
http://dx.doi.org/10.1080/01431160010006971
http://dx.doi.org/10.1080/13504509.2010.493318
http://dx.doi.org/10.1007/s10661-013-3565-9
http://www.ncbi.nlm.nih.gov/pubmed/24366817
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00912.x
http://dx.doi.org/10.1007/s10980-013-9937-2
http://dx.doi.org/10.1016/j.jenvman.2015.03.055
http://www.ncbi.nlm.nih.gov/pubmed/25864941
http://dx.doi.org/10.1016/j.envpol.2016.06.004
http://www.ncbi.nlm.nih.gov/pubmed/27321883
http://resources.arcgis.com/en/help/main/10.2/#/na/005p0000000t000000/
http://resources.arcgis.com/en/help/main/10.2/#/na/005p0000000t000000/
http://dx.doi.org/10.1080/13658810802443457
http://dx.doi.org/10.1016/j.envsoft.2012.01.015
http://www.fjlgy.com/SView347.aspx


Remote Sens. 2018, 10, 1814 17 of 18

39. Jenks, G.F. The data model concept in statistical mapping. Int. Yearbook Cartogr. 1967, 7, 186–190.
40. Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability.

Ecol. Eng. 2008, 33, 179–186. [CrossRef]
41. Ballinas, M.; Barradas, V.L. Transpiration and stomatal conductance as potential mechanisms to mitigate the

heat load in Mexico city. Urban For. Urban Green. 2016, 20, 152–159. [CrossRef]
42. Bonan, G.B.; Williams, M.; Fisher, R.A.; Oleson, K.W. Modeling stomatal conductance in the earth

system: Linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum.
Geosci. Model Dev. 2014, 7, 2193–2222. [CrossRef]

43. Henneron, L.; Chauvat, M.; Archaux, F.; Akpa-Vinceslas, M.; Bureau, F.; Dumas, Y.; Mignot, L.; Ningre, F.;
Perret, S.; Richter, C.; et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and
decomposability of Quercus petraea. Ecol. Monogr. 2017, 87, 321–340. [CrossRef]

44. Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response,
and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [CrossRef] [PubMed]

45. Damour, G.; Simonneau, T.; Cochard, H.; Urban, L. An overview of models of stomatal conductance at the
leaf level. Plant Cell Environ. 2010, 33, 1419–1438. [CrossRef] [PubMed]

46. Lewis, J.D.; Phillips, N.G.; Logan, B.A.; Hricko, C.R.; Tissue, D.T. Leaf photosynthesis, respiration and
stomatal conductance in six Eucalyptus species native to mesic and xeric environments growing in a
common garden. Tree Physiol. 2011, 31, 997–1006. [CrossRef] [PubMed]

47. Buckley, T.N.; Mott, K.A. Modelling stomatal conductance in response to environmental factors.
Plant Cell Environ. 2013, 36, 1691–1699. [CrossRef] [PubMed]

48. Manzoni, S.; Vico, G.; Katul, G.; Fay, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing stomatal
conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types
and climates. Funct. Ecol. 2011, 25, 456–467. [CrossRef]

49. Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 2014, 208747.
[CrossRef]

50. Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry
climate. Landsc. Urban Plan. 2009, 92, 179–186. [CrossRef]

51. Egerer, M.H.; Lin, B.B.; Threlfall, C.G.; Kendal, D. Temperature variability influences urban garden plant
richness and gardener water use behavior, but not planting decisions. Sci. Total Environ. 2019, 646, 111–120.
[CrossRef] [PubMed]

52. Zamani, Z.; Heidari, S.; Hanachi, P. Reviewing the thermal and microclimatic function of courtyards.
Renew. Sustain. Energy Rev. 2018, 93, 580–595. [CrossRef]

53. Lee, I.; Voogt, J.; Gillespie, T. Analysis and comparison of shading strategies to increase human thermal
comfort in urban areas. Atmosphere 2018, 9, 91. [CrossRef]

54. Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.;
Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential
heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [CrossRef]

55. Luo, W.; Jasiewicz, J.; Stepinski, T.; Wang, J.; Xu, C.; Cang, X. Spatial association between dissection density
and environmental factors over the entire conterminous united states. Geophys. Res. Lett. 2016, 43, 692–700.
[CrossRef]

56. Tsukaya, H. Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 2005, 49, 547–555.
[CrossRef] [PubMed]

57. He, Q.; Bertness, M.D. Extreme stresses, niches, and positive species interactions along stress gradients.
Ecology 2014, 95, 1437–1443. [CrossRef] [PubMed]

58. Heffernan, J.B.; Soranno, P.A.; Angilletta, M.J.; Buckley, L.B.; Gruner, D.S.; Keitt, T.H.; Kellner, J.R.;
Kominoski, J.S.; Rocha, A.V.; Xiao, J.; et al. Macrosystems ecology: Understanding ecological patterns
and processes at continental scales. Front. Ecol. Environ. 2014, 12, 5–14. [CrossRef]

59. Duffy, J.E.; Reynolds, P.L.; Boström, C.; Coyer, J.A.; Cusson, M.; Donadi, S.; Douglass, J.G.; Eklöf, J.S.;
Engelen, A.H.; Eriksson, B.K.; et al. Biodiversity mediates top–down control in eelgrass ecosystems: A global
comparative-experimental approach. Ecol. Lett. 2015, 18, 696–705. [CrossRef] [PubMed]

60. Xian, Y.; Wang, M.; Chen, W. Quantitative assessment on soil enzyme activities of heavy metal contaminated
soils with various soil properties. Chemosphere 2015, 139, 604–608. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ecoleng.2008.02.008
http://dx.doi.org/10.1016/j.ufug.2016.08.004
http://dx.doi.org/10.5194/gmd-7-2193-2014
http://dx.doi.org/10.1002/ecm.1252
http://dx.doi.org/10.1093/jxb/ers347
http://www.ncbi.nlm.nih.gov/pubmed/23264516
http://dx.doi.org/10.1111/j.1365-3040.2010.02181.x
http://www.ncbi.nlm.nih.gov/pubmed/20545879
http://dx.doi.org/10.1093/treephys/tpr087
http://www.ncbi.nlm.nih.gov/pubmed/21937672
http://dx.doi.org/10.1111/pce.12140
http://www.ncbi.nlm.nih.gov/pubmed/23730938
http://dx.doi.org/10.1111/j.1365-2435.2010.01822.x
http://dx.doi.org/10.1155/2014/208747
http://dx.doi.org/10.1016/j.landurbplan.2009.04.005
http://dx.doi.org/10.1016/j.scitotenv.2018.07.270
http://www.ncbi.nlm.nih.gov/pubmed/30053661
http://dx.doi.org/10.1016/j.rser.2018.05.055
http://dx.doi.org/10.3390/atmos9030091
http://dx.doi.org/10.1007/s10980-015-0284-3
http://dx.doi.org/10.1002/2015GL066941
http://dx.doi.org/10.1387/ijdb.041921ht
http://www.ncbi.nlm.nih.gov/pubmed/16096964
http://dx.doi.org/10.1890/13-2226.1
http://www.ncbi.nlm.nih.gov/pubmed/25039207
http://dx.doi.org/10.1890/130017
http://dx.doi.org/10.1111/ele.12448
http://www.ncbi.nlm.nih.gov/pubmed/25983129
http://dx.doi.org/10.1016/j.chemosphere.2014.12.060
http://www.ncbi.nlm.nih.gov/pubmed/25585863


Remote Sens. 2018, 10, 1814 18 of 18

61. Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C. Modeling surface water-groundwater interaction in arid
and semi-arid regions with intensive agriculture. Environ. Model. Softw. 2015, 63, 170–184. [CrossRef]

62. Iwamura, T.; Lambin, E.F.; Silvius, K.M.; Luzar, J.B.; Fragoso, J.M.V. Agent-based modeling of hunting and
subsistence agriculture on indigenous lands: Understanding interactions between social and ecological
systems. Environ. Model. Softw. 2014, 58, 109–127. [CrossRef]

63. Iizuka, K.; Watanabe, K.; Kato, T.; Putri, N.; Silsigia, S.; Kameoka, T.; Kozan, O. Visualizing the spatiotemporal
trends of thermal characteristics in a peatland plantation forest in Indonesia: Pilot test using Unmanned
Aerial Systems (UASs). Remote Sens. 2018, 10, 1345. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.envsoft.2014.10.011
http://dx.doi.org/10.1016/j.envsoft.2014.03.008
http://dx.doi.org/10.3390/rs10091345
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Overview 
	Study Area 
	Creation of a Multisource Spatial Database 
	Inversion of Surface Temperature of Urban Forest Canopies 
	Spatial Statistical Analysis 
	Determination of Optimal Threshold Distance 
	Statistical Analysis Based on Global Moran’s I and Local Getis–Ord Gi* 
	GeogDetector Modeling 


	Results 
	The Surface Temperatures of Urban Forest Canopies, Stand Structure, and Anthropogenic Activity 
	Mechanisms that Influence Surface Temperatures of Urban Forest Canopies 

	Discussion 
	Mechanisms that Impact the Surface Temperature of Urban Forest Canopies 
	Recommendations for Further Study 

	Conclusions 
	References

